学術大会

学術大会表彰者論文

経年劣化による乳房撮影用CR受像器への影響

石心会 さやま総合クリニック 大野 香

埼玉放射線・Vol.62 No.4 2014

「カテーテル/カ^{*}ーセ^{*}強調機能」を用いた画像処理の検討 埼玉医科大学病院 馬場 美和

前立腺IMRTにおける2D-2D骨照合による PTV marginの基礎的検討

埼玉県厚生連久喜総合病院 眞壁 耕平

「経年劣化による乳房撮影用 CR 受像器への影響」

社会医療法人財団 石心会 さやま総合クリニック 大野 香

学術大会

1. 背景

1-1 はじめに

埼玉放射線 · Vol.62 No.4 2014

デジタルマンモグラフィの受光系である computed radiography: CR は、1981 年に富士フイルムよ り発表され電子カルテの導入など時代とともに普 及した。日本乳がん検診精度管理中央機構の報告 によると、年度別評価台数(新規・更新・再評価 を含む)においてデジタル画像評価が開始された 平成 16 年度の CR の評価台数はわずか 11.7%で あったが、年度毎に増加している。近年は digital radiography: DR の普及により横ばいではある が、平成 24 年度も評価台数の約 70%が CR であ る。

1-2 乳房撮影用 CR 受像器

淡く微細な石灰化を検出の対象としているた め、一般撮影用と比べ高分解能である。

メーカーの推奨する使用期間は、適切なクリー ニングを行った上でキズ、変色や感度低下等によ り画像診断に支障をきたすまでとされており、明 確な使用期限や評価方法の記載はない。 1-3 乳房撮影用 CR 受像器の経年劣化

X 線照射量および撮影回数が多くなるほど、乳 房外側領域の感度低下が認められる。感度低下を きたした CR 受像器は Contrast to Noise Ratio: CNR、System Contrast Transfer Functions: SCTF が低下する。

2. 目的

経年劣化の評価項目について、均一性、CNR、 SCTF および SNR に着目し、検討することを目 的とした。また、一般撮影装置を用いた SNR 測 定の有用性を検討することを目的とした。

3. 使用機器

乳房 X 線撮影装置、一般撮影装置は東芝メディ カルシステムズ社製 Pe・ru・ru、KXO-80G、読 取装置は富士フイルムメディカル社製 PROFECT-CSを使用した。CR 受像器は富士フ イルムメディカル社製の Imaging Plate: IPを5 枚使用した。使用期間/曝射回数は、未使用/0 回、6ヵ月/約1500回、18ヵ月/約4000回、 42ヵ月/約8000回である。使用期間42ヵ月の IPは2枚使用し、それぞれ①、②とした。ファ ントムは、PMMAファントム40mm、アルミニ ウム板 0.2mm(純度 99.9%以上)、SCTF 測定用 チャートを用いた。得られた Row data の解析に は、ImageJを用いた。

4. 方法

4-1 撮影条件の決定

PMMA ファントム 40mm を乳房支持台上に置 き、圧迫板をファントムに接するように配置し た。未使用の IP をカセッテに装填し、Full Auto にて撮影を行い、得られた管電圧、mAs 値、ター ゲット/フィルタを記録した。Manual にて同様 の mAs 値が設定できない場合は、その mAs 値 を上回る最も近い値とした。

表	1	:	得	6	れ	た	撮	影	条	件
---	---	---	---	---	---	---	---	---	---	---

	管電圧	mAs 値	ターゲット
	(kV)	(mAs)	/フィルタ
撮影条件	30	56	Mo / Mo

4-2 均一性

PMMA ファントム 40mm を乳房支持台上に置 き、圧迫板をファントムに接するように配置し た。未使用、6ヵ月、18ヵ月、42ヵ月①、42ヵ 月②の計5枚の IP を 4-1. 撮影条件の決定にて得 学術大会 <sup>
埼玉放射線・Vol.62</sup>No.4 2014

られた撮影条件にて撮影し、各撮影画像を 5M モ ニタにて観察した。

4-3 CNR

PMMA ファントム 40mm を乳房支持台上に置 き、その上に撮影台に向かって右側にアルミニウ ム板を配置した(図1)。圧迫板はファントムに 接するように配置した。未使用、6ヵ月、18ヵ 月、42ヵ月①、42ヵ月②の計5枚の IPを41. 撮影条件の決定にて得られた撮影条件にて撮影し た。各撮影画像の Row data を ImageJ にて、2ヵ 所の ROI 中の画素値の平均値と標準偏差を求め、 CNR を算出した(図2)。

図1:アルミニウム板配置図と ROI 設定位置

CNR =	$m_{BG} - m_{Al}$
01111 -	$\sigma^2_{BG} + \sigma^2_{Al}$
	$\sqrt{2}$
図 2.	CNR 算出式

4-4 SCTF

 圧迫板を取り外し、PMMA ファントム 40mm を乳房支持台上に置き、その上に SCTF 測定用 チャートを左右中央、胸壁から 60mm の位置に 線群がくるように配置した(図3)。未使用、6ヵ 月、18ヵ月、42ヵ月①、42ヵ月②の計5枚の IP を 4-1 撮影条件の決定にて得られた撮影条件にて 撮影した。各撮影画像の Row data を ImageJ に て、2lp/mm のチャートの透過領域、チャートの 線群、チャートの遮蔽部に ROI を設定し、それ ぞれの画素値の平均値、標準偏差を求め、SCTF (M (f)) を算出した(図4、5)。同様に、4lp/ mmの線群について SCTF (M (f))を算出した。

図 4: ROI 設定位置

$$M_{0} = \frac{\sqrt{2}}{\pi} |m_{a} - m_{t}|$$

$$\sigma^{2} = \frac{\sigma_{a}^{2} + \sigma_{t}^{2}}{2}$$

$$M(f) = \frac{\sqrt{\sigma_{f}^{2} - \sigma^{2}}}{M_{0}}$$

4-5 SNR

PMMA ファントム 40mm を乳房支持台上に置 き、圧迫板をファントムに接するように配置し た。未使用、6ヵ月、18ヵ月、42ヵ月①、42ヵ 月②の計5枚の IP を 4-1. 撮影条件の決定にて得 られた撮影条件にて撮影した。各撮影画像の Row data を ImageJ にて、画像中心と上下左右 の計5ヵ所の ROI 中の画素値の平均値と標準偏 差を求め、SNR を算出した(図6、7)。

図 6: ROI 設定位置

4-6 一般撮影装置を用いた SNR

主の

一般撮影装置にて未使用、42ヵ月①の計2枚 のIPを撮影した(表2)。入射点は画像中央とし、 胸壁端に陽極がくるように管球を配置した(図 7)。各撮影画像のRow dataをImageJにて、図 6と同様にROIを5ヵ所設定し、ROI中の画素 値の平均値と標準偏差を求め、SNRを算出した。

<u>1X</u> 4		彩衣 匡にる	トロ取が木	11
	答雷口	答雷法	時間	51

図7:一般撮影装置を用いた SNR 測定図

5. 結果

5-1 均一性

42 ヵ月の IP にて乳房やマーカーの跡が見られ たが、その他の IP では明らかな変化は見られな かった(図 8)。

未使用

図8:均一性撮影画像

5-2 CNR

42ヵ月の IP で低い値となった(図 9)。

5-3 SCTF

5-4 SNR

管軸方向では、全ての IP で胸壁上部の SNR が 高くなった。管軸と直行する方向では、全ての IP で乳頭側下部の SNR が低くなった(図11)。

5-5 一般撮影装置を用いた SNR

乳頭側の SNR が 42 ヵ月の IP で低くなった (図 12)。

埼玉放射線・Vol.62 No.4 2014

6. 考察

6-1 CNR, SCTF

CNR は使用期間が長い IP ほど低い値となった のは、経年劣化による IP の感度低下の影響と考 えられる。SCTF でも使用期間の長い IP で低い 傾向となったが、明らかな差は認められなかった。

日本乳がん検診精度管理中央機構では、CNR8以 上、平均乳腺線量 25mGy 以下、SCTF2lp/mm80% 以上、4lp/mm60%以上となる撮影条件の設定を推 奨している。CNR は PMMA ファントム 40mm の 撮影条件にて評価が行え、日本乳がん検診精度管 理中央機構の推奨値を参考に基礎値・管理幅が設 定できる。しかし、SCTF は当院の撮影条件では、 推奨値に届かず、撮影条件の見直しを含めた検討 が必要と思われる。

以上より、経年劣化の評価には、CNR 測定が 有用と考えられる。

6-2 SNR

全ての IP の胸壁端の SNR が高い値となったの は、一般撮影装置を用いた SNR 測定結果より、 ヒール効果の影響と考えられる。

全ての IP 下部の SNR が上部に比べ低い値と なったのは、一般撮影装置を用いた SNR 測定結 果では IP の上部と下部で SNR に差は認められな かったため、管球面と支持台のアライメントのず れによる影響が示唆される。

395 (22)

7. 結語

長期間使用した IP では、感度低下の影響が臨 床上問題となる恐れがあるため、施設ごとに基礎 値・管理幅を設ける必要があり、その評価には CNR 測定が簡便で有用である。

また IP の経年劣化は、一般撮影装置を用いる と簡便に確認できる。

執筆者紹介

大野 香 (おおの かおり)
 城西医療技術専門学校 卒業
 検診マンモグラフィ撮影技師 A 評価
 技師歴 6 年

「カテーテル / ガーゼ強調機能」を用いた画像処理の検討

埼玉医科大学病院 馬場 美和

埼玉放射線・Vol.62 No.4 2014

1. 施設紹介

1-1 はじめに

当院は埼玉県入間郡毛呂山町に位置する特定機 能病院で、診療科 34 科、病床数 980 床、外来患 者数約 2000 人、放射線科医師 7 名(放射線診断 科 5 名、放射線腫瘍科 1 名、核医学診療科 1 名)、 放射線科看護師 9 名、診療放射線技師 54 名が所 属している。近年では、従来の X 線画像とは全 く異なるメカニズムによる新しい X 線撮像装置 (位相コントラスト法「Talbot-Lau 干渉計」)の 臨床研究も行っている(図 1)。

図1:Talbot-Lau干涉計撮影画像

1-2 中央放射線部 単	純撮影検査件数	
(平成 23 年 4 月~平成	戊24年3月)	
胸部・腹部系		53,590 件
頭部・顔面系		1,269 件
脊椎系		7,836 件
歯科系		2,525 件

胸郭系	772 件
骨盤系	544 件
上肢系	9,076 件
下肢系	16,360 件
乳房撮影	2,098 件
全身骨	349 件
ストレス撮影	23 件
外来・病棟ポータブル	20,537 件
手術室ポータブル	2,354 件

2. 目的

2012年12月より、主にポータブル撮影に使用 する目的でコニカミノルタ社製 Aero DR を導入 した。当院では、検査目的がカテ先確認などの際 は必要に応じて依頼医師に「カテーテル/ガーゼ 強調機能」(以下、カテ先強調とする)を用いた 画像(図2)を補助画像として提供している。カ テ先強調を使用すると濃度調節はせずに、カテー テルの走行やカテ先の強調された画像を瞬時に得 る事が可能で、臨床現場で高い評価を得ている。 AeroDR は 2013年6月に一般部門、11月には手 術室に導入され、ポータブル以外でもカテ先強調 が使用可能となった。今回、カテ先強調が他の目 的・部位にも応用可能か検討を行った。

図2:カテーテル / ガーゼ強調画像

3. 使用機器

画像診断装置	:	KONICA MINOLTA
		画像ワークステーション CS-7
FPD 装置	:	KONICA MINOLTA
		Aero DR SYSTEM
読影端末	:	TOTOKU LCD Monitor
		CCL 256i2/AR

4. 装置概要

4-1 導入理由

当院では一般X線撮影及びポータブル撮影に おいて、2005年1月より現在のコニカミノルタ 社製CRシステムの使用を開始し、合計9台の CRシステムで運用している。また、2011年9月 からはPACS更新となり現在では完全フイルム レス化となっている。しかし、現状CRシステム は導入後9年経過し、装置の一部老朽化やカセッ テ歪みなどが生じ撮影システム更新の検討時期と なっている(表1)。特に、病棟でのポータブル 撮影で使用しているカセッテに不具合が多く見ら れ、今まで数回修理を行っている。理由として は、患者の背部にカセッテを入れる際、カセッテ 外板の歪みが生じ、読み取り装置の障害が発生す るためである。

表1:CR カセッテの管理状況

	半切	大角	大四切	四切	六切
搬入時	54	54	24	44	44
使用不可	14	4	4	4	5
فاسترك والمراجع والمراجع					

合計 220 枚の管理

フラットパネルデイテクター(以下、FPD) に変更を行えば、少ない枚数で管理・運用を行え ると考え、ポータブル撮影及び一般X線撮影に おいてコニカミノルタ社製ワイヤレスカセッテ型 DR 装置 Aero DR を導入した。このシステムは 従来の半切サイズカセッテと同サイズのパネルを 使用しているため、現状の撮影システム環境を大 きく変えず使用可能であった。今後 FPD15 枚程 度で運用する予定である。 4-2 装置性能

CR カセッテと違い耐荷重性能が高く1点荷重で は150kg、全面荷重では300kgに対応可能で、丈夫 な構造になっている(図3)。CR カセッテの故障要 因となる歪みが無いため、長期間使用可能である。

図3:耐荷重性能実験

有線・無線を簡単に切り替えられるように有線 接続時のコネクター接合部に強化マグネットを使 用している。ケーブルが FPD に装着されると、 コンソールとの通信が無線から有線に自動的に切 り替わり、ケーブル経由でパネルに電力が供給さ れ、バッテリーも充電される。

撮影時に照射野がパネルの端に偏った場合でも 自動検出するため、撮影時にパネルの中心位置を 意識する必要はない。また、CR カセッテを種類 別に管理することなく、半切サイズ FPD1 枚で、 すべての撮影が可能である(図4)。FPD 導入に よるスループット向上により、検査時間の短縮が 可能となった。

自動照射野認識機能 動的に照射野を認識し有効画像領域を検出します。 撮影時に照射野がパネルの端に偏った場合でも自動検出する為、 撮影時にパネルの中心位置を意識する必要はありません。 ↓

図4:自動照射野認識機能

カテ先・ガーゼ強調処理

埼玉放射線・Vol.62 No.4 2014

■周波数強調ルーチン 多重解像度分解後にチューブ状構造成分のコントラスト/ノイズ比が高い周波数帯を 強調する。(下図の場合は2,3周波数帯を強調)

図5:カテーテル/ガーゼ強調機能

4-3「カテーテル / ガーゼ強調機能」

カテ先強調画像とは「もっと簡単に、カテ先の 見やすい処理は出来ないか」という当院の要望か ら、コニカミノルタが独自で開発した強調処理画 像である(図2)。ハイブリット処理同様、多重 解像度分解ルーチン画像を作成し、その中で チューブ状構造物成分のコントラスト/ノイズ比 が高い周波数帯を強調し、元画像に加算する。更 に、高/低濃度域のダイナミックレンジ圧縮を行 う事で、すべての画像領域が視認可能な強調処理 画像である(図5)。

カテ先強調の強調レベルは3段階設定されてい る。本実験では強調レベルの1番強いレベル3を 使用した。なお、カテ先強調がOFF以外の場合 は、画像調整及びE処理、F処理、Hybrid、パ ラメータ調整は操作出来ない。CS-7では異物確 認用のため、頭部・胸部・腹部専用のオプション 機能として製品化されている。

5. 画像評価方法

ファントム画像及び臨床画像において、通常出 力画像とカテ先強調画像の視覚評価を行った。 (診療放射線技師 20 名で視覚評価)

- 1) 原画像と比較してどう変化したか
 - (a) 見やすくなった
 - (b) 変わらない
 - (c) 見づらくなった
- 2)補助画像として必要か
 - (a) 必要
 - (b) 不必要

なお、カテ先強調画像は主画像ではなく、あく までも補助画像という事を前提とした。

6. 結果

症例1. 検査項目: 胸部正面 検査目的:異物(ボタン・ガラス)

- (a) ボタン
- (b) ボタン元画像
- (c) ボタンカテ先強調画像
- (d) ガラス
- (e) ガラス元画像
- (f) ガラスカテ先強調画像

図6

1) 胸部ファントムの縦隔部にボタンを置き撮影 した。図6(b)ではっきりしないボタンの陰 影が、カテ先強調を使用する事で明瞭にボタ ンの輪郭をとらえる事が出来た。また図6(f) では同部位に置いたガラス片も視認可能で あった。

症例 2. 検査項目:頸部側面 検査目的:異物(小骨・錠剤シート)

(a) 小骨 (b) 小骨元面像

d

e

a

b

c | f

(b)	小骨元画像		a	d
(c)	小骨カテ先強調画像	•	,	
(d)	錠剤シート		b	e
(e)	錠剤シート元画像		c	f
(f)	錠剤シートカテ先強調画像			

図7

2) 頭部ファントムの頚部部分に魚の骨を貼り付 け撮影した。小骨は薄くて小さいため、全体 的に淡く写っているが、カテ先強調を使用す る事で原画像より明瞭に確認する事ができた。 また同部位に置いた錠剤シートも強調され、 確認が容易となった。視覚評価はほとんどの 回答者が「見やすくなった・補助画像として 必要」と回答した。

症例3. 検査項目: 頸部側面検査目的:手術後軟口蓋のチェック

- (a) 元画像
- (b) カテ先強調画像

図8

- 3) セファログラムの画像。図8(b) では軟口蓋 だけでなく咽頭や気管の辺縁部分まで描出可 能であった。検査目的が軟部組織や皮膚表面 部分である場合、有用性が高いと考えられる。
- 症例4. 検査項目: 顔面骨側面 検査目的: 骨折の有無

- (a) 元画像
- (b) カテ先強調画像

図 9

4) 図9(b)のように、カテ先強調を使用すると 濃度調節せずに鼻骨確認が可能である。明白 な変形などは評価可能だが、微細な骨折など を評価するには強調条件を検討する必要性が 示唆された。 症例 5. 検査項目:耳下腺造影(L) 検査目的:左顎下腺部の痛み

(a) 元画像

(b) カテ先強調画像

図 10

- 5) 図 10(a) では、耳下腺の末梢部まで描出で きていないが、カテ先強調を使用する事で末 梢導管まで明瞭に描出可能となった。見づら いという意見の中には「末梢部が描出できる 反面、耳下腺の中枢部は強調されすぎてつぶ れてしまっている」という意見もあった。し かしながら、濃度調節せずにワンタッチで末 梢部まで描出可能なため、有用性は高いと考 える。
- 症例 6. 検査項目:パントモグラフィー検査目的:左側下歯埋没歯

b а (a) 元画像 (b) カテ先強調画 図 11

 6) 図11(b)のパントモグラフィーでは埋没歯に 大きな変化は無いが、下顎管が見やすくなり、 埋没歯との位置関係が分かりやすくなった。

症例7. 検査項目:アキレス腱 検査目的:アキレス腱部の痛み

- a b
- (a) 元画像
- (b) カテ先強調画像

図 12

7) 図 12(b) ではカテ先強調を使用する事でア キレス腱の石灰化が描出可能となった。通常、 このような石灰化は描出困難なため、カテ先 強調画像の有用性は高く、補助画像としての 評価も高い事が分かる。視覚評価も多数が 「見やすくなった」と回答した。

図 13

8) 骨折はカテ先強調を使用してもあまり変化が なかった。留意点として、カテ先強調を使用 する事で洋服などのしわと骨折線の区別がつ きにくくなり、偽骨折に見える可能性がある。

症例 9. 検査項目:手術室ポータブル 検查目的:術中胆道造影

(a) 元画像

(b) カテ先強調画像

図 14

9) 当院では 2013 年 11 月手術室にも CS-7 が導入 され、カテ先強調が使用可能となった。図14 (b) では造影糸入りの手術用ガーゼが強調さ れているのが確認できる。手術室においても、 カテ先強調を使用することで、術後のガーゼ や器具などの異物確認にも利用できる。

(a) 元画像

(b) カテ先強調画像

図 15

а

10) 手術室における頸椎側面画像である。患者は 腹臥位及び側臥位の場合が多く、図15(a) では下位頸椎が肩と重なってしまい評価困難 である。カテ先強調はワンタッチで瞬時に画 像処理が可能なため、手術室での提供画像と して非常に有効である。図15(b)は担当医 からの要望で提供したカテ先強調画像である。

症例 11. 検査項目:小児胸腹部正面 検査目的:カテ先確認

学術大会

b a

- (a) 元画像
- (b) カテ先強調画像

図 16

11)小児の異物誤飲を撮影し、カテ先強調画像を 配信したところ、担当医から「次回から依頼 した際はカテ先強調画像を送ってほしい」と の要望があった。図16(a)(b)は、異物誤 飲の画像ではないが、異物の形状や材質に よっては写る可能性があり、補助画像として の必要性は高い。

4. 考察

カテ先強調画像が最も効果的だったのは17人 が「見やすくなった」と回答したアキレス腱で あった。次いで15人の耳下腺造影であった。カ テ先強調を使用する事で、元画像より皮膚面まで 描出可能なため、アキレス腱の石灰化が確認しや すくなり、耳下腺の末梢部まで造影像の確認が可 能となった事が理由として挙げられる。また濃度 調節が難しい部位に対してワンタッチで強調可能 なため、有用性は高いと考える。対して、カテ先 強調画像が適していないと思われるのが骨折(2 人)であった。今回、骨折画像を数例検討してみ たが、ほとんどが強調しても変化なく、見づらく なってしまった。また強調する事で衣服などと骨 折線が分かりにくくなるため、強調条件を検討す る必要がある。

埼玉放射線・Vol.62 No.4 2014

必要なカテ先強調画像は参照用画像としてサー バーへ配信を行っている。中でも、小児の異物誤 飲は異物の形状や材質によっては写る可能性があ り、参照用画像として有用性が高いと考える。ま た皮膚表面に対しての効果も高いため、外傷での ガラス片精査等にも応用可能であると考える。

視覚評価を通してほとんどの症例に共通する事 は「変わらない・見づらくなったが補助画像とし てはあり」という意見が多かった。カテ先強調は あくまでも補助画像としての利用が原則である が、病変の周囲や位置関係など、得られる情報が 増えるという事もこの処理の利点と考える。

5. 結語

カテ先強調は有用な症例も多いが、適さない症 例もあったため、強調条件を検討する必要がある。 今回は強調条件を一番強調されるレベル3に統一 して検討を行ったが、レベルを落とせばカテ先強 調が有用な症例もあった。今後、今回検討した症 例以外にも様々な症例を検討し、今後の臨床現場 においての診断向上に役立てるよう、努めたい。

最後に、中央放射線部並びにコニカミノルタヘ ルスケア 沼崎様に協力を頂きありがとうござい ました。この場を借りてお礼を申し上げます。

執筆者紹介

馬場 美和(ばば みわ)
 平成元年4月17日生まれ 25歳
 日本医療科学大学 診療放射線学科卒業
 技師歴3年

「前立腺 IMRT における 2D-2D 骨照合による PTV margin の基礎的検討」

埼玉県厚生連入喜総合病院

埼玉放射線・Vol.62 No.4 2014

真壁 耕平

1. 背景

1-1 はじめに

学術大会

放射線治療はレントゲン氏がX線を発見した 1885年の翌年1886年に5kVと非常に低いエネ ルギーを使用した表在性の疼痛緩和から始まり、 現在では高エネルギーX線に限らず、陽子線、 中性子線まで使用した放射線治療へと進歩してい る。照射方法においても1957年に梅垣氏が発案 した可変絞り照射法を先駆けに、原体照射を経 て、現在最先端である強度変調放射線治療 (Intensity Modulated Radiation Therapy: IMRT) が誕生した。

1-2 IMRT とは

IMRTとはリスク臓器(Organ At Risk:OAR) 等に近接する標的への限局的な照射において、空 間的、時間的に強度変調を施した線束を利用し、 逆方向治療計画(Inverse Planning)にてOAR を避けながら標的形状(Target)と一致した最 適な三次元線量分布を作成し治療する照射方法で ある¹⁾。つまり、Targetに形状を合わせた線量分 布を作成し、OARを含む正常組織の投与線量を 低減することが可能な照射方法である。

1-3 従来の照射方法と IMRT の比較

従来の照射方法では Forward Planning といっ た隣接する OAR を考慮しながらビームパラメー タを設定することで線量分布を作成するが、 IMRT では Inverse Planning といった理想の線量 分布を想定したパラメータを設定することで、 ビームパラメータを治療計画装置が計算を行う。 また、IMRT では計画標的体積(Planning Target Volume: PTV)辺縁に最適な線量を投与し、 PTV と OAR の境界で急激に線量を落とすような 急峻な線量分布を作成し、OAR の線量低減を図

図1:線量分布の比較 (a) 従来の照射方法、(b) IMRT

ることで Target に投与する線量も増やすことが 出来る。しかし Setup error により臨床標的体積 (Clinical Target Volume :CTV) や OAR への最終 投与線量に対し大きく影響するため、Setup error を限りなく小さくする必要がある。また、PTV margin は施設ごとに固定方法、照合方法が異な るため、CTV への過小線量投与、OAR への過剰 線量投与を避けるためにも適切な値を設定するこ とが非常に重要である。従来の照射方法による線 量分布と IMRT による線量分布を図1に示す。

1-4 現在の照射方法

現在当院では前立腺癌に対する照射方法として、前後左右対向4門照射、打ち抜き原体照射を 組み合わせた画像誘導放射線治療(Image

埼玉放射線 · Vol.62 No.4 2014

図2:前立腺癌治療における固定方法

Guided Radiotherapy) を総線量 72 ~ 74Gy にて 行っている。

2. 目的

本検討では前立腺 IMRT を 2D-2D 骨照合にお いて施行する際の、最適な PTV margin につい て基礎的検討を行ったので報告する。

3. 方法

3-1 使用機器

直線加速器は Elekta Synergy (Elekta 社製) を 使用し、2D-2D 骨照合には MOSAIQ (Elekta 社 製)、Cone Beam Computed Tomography (CBCT) での前立腺内石灰化照合には XVI System (Elekta 社製)を使用した。

3-2 対象症例

前立腺の周辺には様々な臓器があり、直腸内に あるガス、便等の生理的影響や、膀胱内の尿量に より前立腺の位置関係が異なってしまうため、本 検討では前立腺癌治療を施行した患者から、前立 腺内石灰化を有し、CBCT 撮影時にガス、便が なく前立腺の位置変動に影響を与えづらい 11 症 例を対象とした。

3-3 Setup 方法

当院での前立腺癌治療の Setup は、体幹部固 定具(Hip-Fix) 上で体表の CT センター、 Isocenter のマーキングに対し、2 段階で整位を 行っている。Isocenter に整位後、固定再現性や

表1:正面像、側面像の撮影条件

学術大会

Collimator	Filter	Panel Position		
S20	F0	Small		
kV	Frames	mAs		
1901-17	-	2.5mAs(正面像)		
120KV	Ð	5.0mAs(側面像)		

図 3:2D-2D 骨照合 (a) 照合前、(b) 照合後

治療中における呼吸抑制を目的としたサーモプラ スチック式 HipPelvis 固定具にて体幹部を固定 し、足部には足部固定具(Feet-Fix)を使用して 前立腺癌治療を施行している。(図2)

3-4 PTV margin 算出

3-4-1 2D-2D 骨照合方法

XVI System にて正面像、側面像の kV を表1 に示す条件にて撮影し、取得した 2D 画像と治療 計 画装置より取得した Digital Reconstruction Radiography (DRR)を重ね合わせて3軸(左右、 頭尾、腹背)方向の位置誤差を算出した(図3)。 算出した移動誤差は寝台補正にて補正を行った。

Collimator	Filter	Panel Position
S20	FO	Small
kV	Frames	mAs
100kV	330	844.8mAs
Start Angle	Stop Angle	Gantry Speed
180	-180	360deg/min

表 2:CBCT の撮影条件

図4:CBCT での前立腺内石灰化照合

3-4-2 CBCT 照合方法

2D-2D 骨照合直後に XVI System にて 180°から-180°までの 360°範囲で CBCT を表2に示す 条件にて撮影し、図4に示すように取得した CBCT 画像と治療計画 CT 画像を前立腺内石灰化 で照合を行い 2D-2D 骨照合からの3軸方向の位 置誤差求め、最大値、最小値、平均値、標準偏差 を算出した。2D-2D 骨照合後の CBCT は治療開 始から5 回目までと、その後は週に1度の頻度で 行い、本検討では11 症例より 81Fr の撮影を行っ た。

3-4-3 Systematic error 算出方法

各患者の CBCT の位置誤差より平均位置誤差 を求め、全患者の平均 誤差を 1SD として Systematic error を算出した。(図 5)

3-4-4 Random error 算出方法

各患者における Random error を次式にて算出 した。

埼玉放射線・Vol.62 No.4 2014

図 5: Systematic error の算出法

 $\sigma k^2 = \Sigma \{ (r_1 - r_m)^2 + (r_2 - r_m)^2 + (r_n - r_m)^2 \} / (n-1) \dots (1)$ ここで σk は各患者の Random error、 r_n は CBCT の1回あたりにおける位置誤差、 r_m は CBCT の 平均位置誤差、n は測定回数とした。本検討では 当施設の Random error を算出するため、(1) で 算出した各患者の Random error から次式にて全 患者の Random error を算出した。

3-4-5 van Herk の理論式

本検討では PTV margin を van Herk の理論式²⁾ を利用して算出した。van Herk の理論式では、 施設で IGRT を施行した 90% の症例において CTV の最小線量が処方線量の 95% を保証すると いった考え方になっており、次式によって算出す る。

PTV marign= $2.5\Sigma+0.7\sigma$ ·······(3) ここでΣは Systematic error、 σ は全患者の Random error である。

学 術

埼玉放射線 · Vol.62 No.4 2014

4. 結果

4-1 前立腺内石灰化照合の結果

全患者の左右方向の最大値は 0.2cm、最小値は 0cm、平均値は 0.02cm、標準 偏差は ± 0.03cm、 頭尾方向の最大値は 0.2cm、最小値は 0cm、平均 値は 0.05cm、標準偏差は ± 0.07cm、腹背方向の 最 大 値 は 0.25cm、最 小 値 は 0cm、平均 値 は 0.01cm、標準偏差は ± 0.06cm となった。各患者 の結果は図 6 に示し、横軸が患者番号、縦軸が石

表 3: Systematic error 算出結果

学術大会

左右方向	0.03cm
頭尾方向	0.07cm
腹背方向	0.06cm

表4:Random error 算出結果

左右方向	0.17cm
頭尾方向	0.27cm
腹背方向	0.30cm

灰化照合した際の各患者の平均誤差値と標準偏差 を表している。

4-2 Systematic error 算出結果

全患者の平均値より算出した Systematic error の結果を表3に示す。頭尾方向における結果が3 軸方向の中で最大であった。

4-3 Random error 算出結果

各患者の Random error より(2)の式で算出し た3軸方向の Random error を表4に示す。腹背 方向における結果が3軸方向の中で最大であった。

4-4 PTV marign 算出結果

左右方向、頭尾方向、腹背方向における Systematic error (Σ) は 0.03cm、0.07cm、0.06cm、 Random error (σ) は 0.17cm、0.27cm、0.30cm となることから (3) 式より求めた PTV margin は、左右方向は 0.19cm、頭尾方向 0.36cm、腹背 方向 0.36cm となり、当院における全方向の最適 な PTV margin は CTV + 0.4cm であれば良いと 判断した。

5. 考察

近年 IGRT の普及により、治療直前にリアルタ イムな画像を利用した位置照合が可能になったた め、PTV margin を縮小して計画が行われるよう になった。しかし、PTV margin の大幅な縮小に より、位置照合後に患者の体動や、臓器の動きに より CTV の一部が照射されなくなる可能性もあ

図6:患者毎の前立腺内石灰化照合の結果 (a)左右方向、(b)頭尾方向、(c)腹背方向

学術 大会

り、PTV marginの設定は極めて重要となってい る。本検討での Setup error は 2D-2D 骨照合と して扱ったが、照合精度の高さが PTV margin を小さく算出する事が出来た要因だと考えられ る。また、照合精度が高かった要因としては、当 院では治療に配属している技師が3人在籍(測定 当時)しているが、3人共に1年以上の照合経験 を有しており、全員が同様な 2D-2D 骨照合を行 うことが出来ていたと考えられる。しかし、今後 経験の浅い技師等の照合により、Observer error が発生した場合に Setup error が大幅に変わるこ とも考えられる。本来 PTV margin を算出する 際には Setup error の他に治療中における前立腺 の位置変動を表す intrafraction organ motion の 誤差を考慮する必要があることや、本検討におけ る対象症例では、CBCT 撮影時にガス、便がな く前立腺の位置変動に影響与えづらい11人を対 象としたが、前立腺癌の治療時においてガス、便 がある患者は少なくなく、前立腺の intrafraction organ motion による照合誤差の影響は大いにあ ると考えられるため、internal margin を含めた 更なる検討が課題である。

6. 結語

本検討により、PTV margin における算出方法 を理解することで当院での前立腺 IMRT におけ る 2D-2D 骨 照 合 よ る PTV margin は CTV + 0.4cm と算出することが出来た。しかし先述した 通り intrafraction organ motion の誤差の考慮を 現段階では出来ていないため、internal margin を含めた検討を再度行いたいと思う。

7. 参考文献

 IMRT 物理 QA ガイドライン専門小委員会.強 度変調放射線治療における物理・技術的ガイドラ イン 2011

2) M van Herk et alINCLUSION OF GEOMETRIC UNCERTAINTIES IN TREATMENT PLAN EVALUATION:Int J Radiat Oncol Biol Phys 52, 1407-1422, 2002

3) Kiyoshi Yoda et al. Extension of van Herk's

treatment margin model for anisotropic systematic positioning errors in Cartesian coordinate system: Medical Physics, Vol. 38, No. 7, July 2011

埼玉放射線・Vol.62 No.4 2014

執筆者紹介

眞壁 耕平(まかべ こうへい)
技師歴3年

埼玉県診療放射線技師会第5支部役員

埼玉県診療放射線技師会公益委員

施設外観

